
Fail2Ban Demystified

A Beginner’s Guide to Configuring Fail2Ban

Custom Fail2Ban Actions

Fail2Ban is a powerful security tool that bridges your public-facing network services

(ssh, mail server, web server, etc.) and your firewall. The Fail2Ban daemon

constantly monitors your server logs, looking for troublemakers. When an intruder

or suspicious activity is detected, it takes action! By default, Fail2Ban writes a

temporary firewall rule that blocks the offender’s IP address on selected ports for a

short period of time.

The real power in Fail2Ban, though, lies in its customizability. Using custom action

scripts, admins can configure how Fail2Ban responds to threats, extending its

abilities far beyond simply interfacing with the firewall. For example, you can define

actions that will send an email or notification, write to a log file or database, invoke a

web API, react differently in different contexts, and so on. The possibilities are

unlimited!

This article explains how actions in Fail2Ban are defined and customized so that you

can get the most out of Fail2Ban.

Fail2Ban Conventions

If you’re not yet experienced with Fail2Ban configuration, it will be helpful for you to

be familiar with these terms:

Fail2Ban Demystified Custom Fail2Ban Actions

filter

A filter is a set of customized regular expressions and properties that is used to

match threatening log entries. When a filter is matched, the actions in the

corresponding jail are invoked. Filter definitions are normally found in the filter.d

subdirectory. This article touches only briefly on filters, but a companion article will

describe them in more detail.

action

An action is a shell command (or commands) that Fail2Ban executes at appropriate

times. For example a ban action is executed when Fail2Ban invokes a ban against an

IP address. Actions are normally defined by configuration files in the action.d

subdirectory.

jail

A jail is a set of actions and parameters that Fail2Ban applies when its filter is

matched. A jail can have multiple actions of the same type, but can only have one

filter. Jails are normally defined in jail.conf and jail.local in the configuration

directory, and by files in the jail.d subdirectory.

Action Configuration Files

This article assumes that you already have Fail2Ban installed and configured

correctly to work with your firewall and now you want to start customizing what it

does. Action configuration files are found in the action.d subdirectory of your

Fail2Ban configuration directory. By default, this is /etc/fail2ban/action.d. In this

directory, you’ll find a few default templates for sending email alerts, alerting

AbuseIPDB.com or Blocklist.de, writing to hosts.deny, and a few other actions, but

without further configuration, Fail2Ban only invokes the actions for writing (and

unwriting) firewall rules.

By convention, all Fail2Ban configuration files end in .conf (for default templates

provided with the Fail2Ban package) or .local (for user-defined configurations).

When a configuration is parsed by Fail2Ban, it will first load the .conf file, and then

load the corresponding .local file, updating any parameters that differ between the

two files.

Important: Since .conf files may be overwritten by new versions when Fail2Ban is

updated, you should not make any changes directly to these files. Instead, make a

copy with the .local suffix and edit the copy:

$ sudo cp mail-whois.conf mail-whois.local

If you are only adding or changing a small number of parameters, it may be more

efficient to just create a new .local file with those parameters:

2 https://www.statusline.org/

https://www.statusline.org/

Fail2Ban Demystified Custom Fail2Ban Actions

$ echo dest=flathead@example.com | sudo tee mail-whois.local

Sections

Action configuration files can have up to three sections, identified by the name of the

section in square brackets.

[INCLUDES]

Configuration files listed in this optional section will be parsed either before or after

the current configuration file. This is useful for importing or updating common

variables. Separate multiple files with spaces or include them on separate lines

beginning with a space or tab.

before = file(s)

Parse these files before the current configuration file.

after = file(s)

Parse these files after the current configuration file, updating variables with new

values.

In the following example, the parameters inmail-addresses.local and

mail-options.local will be read, then those parameters will be updated and amended

by the parameters in this file, then finallymail-overrides.local will be parsed.

[INCLUDES]

before = mail-addresses.local
mail-options.local

after = mail-overrides.local

[Definition]

This section defines the various actions that Fail2Ban will take, for example, when

banning or unbanning an IP address. See the section Fail2Ban Actions below for

details.

Note that you can specify that the actions for banning and unbanning should be

ignored for restored bans (for example, bans that are restored when Fail2Ban is

restarted) by including:

3 https://www.statusline.org/

https://www.statusline.org/

Fail2Ban Demystified Custom Fail2Ban Actions

norestored = 1

[Init]

This optional section defines the default values for variables used by the actions in

this configuration. The default values will be overridden when either:

● A new value is assigned in a configuration file parsed after this one in the

[INCLUDES] section (see above), or

● A value is explicitly assigned in the jail definition.

For example,

[INCLUDES]
after = mail-overrides.local

[Definition]
norestored = 1
actionban = writelog.sh <message>

[Init]
message = An IP address has been banned

In this example, a shell script called “writelog.sh” is executed with the argument

message when a scofflaw is banned. (Note the angle brackets around the variable

name.) The default value formessage is “An IP address has been banned” but if

message is redefined bymail-overrides.local, or by the jail’s definition, the updated

value will be used instead.

Fail2Ban Actions

These are the actions that can be included in the [Definition] section of an action

configuration file. Each specifies a command or script to execute in a certain context.

By default, the Fail2Ban daemon runs as root, but if you have changed that behavior,

you’ll need to make sure the daemon’s user has permissions for the desired

commands.

Action scripts can be multiple lines so long as each new line begins with a space or

tab, similar to shell scripts.

Most custom actions will only need an actionban command or script. The list of valid

actions includes:

4 https://www.statusline.org/

https://www.statusline.org/

Fail2Ban Demystified Custom Fail2Ban Actions

actionban

As the name implies, Fail2Ban will try to run this command or script when it

normally bans an IP address. If the command fails (returns an exit code other than

0), actioncheck will be run next, otherwise the ban is considered enforced. You can

instruct Fail2Ban to ignore this action for restored bans by setting norestored=1 in

the [Definition] section of the file.

actionunban

This defines the command or script that Fail2Ban will run when an IP address is

unbanned, either because it has reached its expiration time or an unban has been

forced, such as when the service is stopped. If the command fails (returns an exit

code other than 0), actioncheck will run next. You can instruct Fail2Ban to ignore

this action for restored bans by setting norestored=1 in the [Definition] section of the

file.

actionprolong

This defines the command that Fail2Ban will run when it extends an IP’s ban time

due to repeated offenses. This occurs when (1) the jail’s bantime.increment property

is “true” and (2) there is at least one previous ban for this IP in the database. This

action is run in addition to and after actionban has completed, which may be a few

seconds later.

actioncheck

This command or script is invoked only if actionban or actionunban fails (returns an

exit code other than 0). If actioncheck also returns an exit code other than 0, then

actionrepair will be called next. For example, if actionban tries to write to a file but

fails, actioncheck could verify the existence and permissions of the file, then, if it

doesn’t exist, actionrepair could recreate the file and set permissions. Note that in

early versions of Fail2Ban, actioncheck was called before each actionban, but this

behavior was changed as of version 1.0.1.

actionrepair

This command or script is invoked only if actioncheck returns an error code other

than 0.

actionreban

This command or script runs when a ban is reinstated after a daemon restart. If it

does not exist, actionban runs instead.

5 https://www.statusline.org/

https://www.statusline.org/

Fail2Ban Demystified Custom Fail2Ban Actions

actionstart

This command or script runs when a jail is started.

actionstop

This command or script runs when a jail is stopped.

actionflush

This command or script runs when several or all bans are removed in one fell swoop,

such as when Fail2Ban is stopped or is reloaded with a previously-active jail

removed, or with fail2ban-client unban –all. By default, actionunban is called for

each banned IP.

Action Tags

Fail2Ban pre-defines several action tags with useful values. To use them in

commands or scripts, enclose the variable name in angle brackets:

actionban = banomatic.sh <ip> <bancount>

will invoke the “banomatic.sh” script with the banned IP address and the number of

times that IP address has been banned as arguments.

You can also use angle brackets to refer to variables defined within your

configuration file.

These action tags are pre-defined:

name The name of the jail for this ban

fq-hostname The fully-qualified hostname of your host (e.g.

mail.example.com)

fq-shortname The short hostname of your host (e.g.mail)

ip The banned IP address

ip-rev The IP address, in reversed order, suitable for reverse

DNS lookups. For example, if <ip> is

“111.222.333.444”, then <ip-rev> will be

“444.333.222.111.”

ip-host The banned IP’s hostname, if it has a PTR record

(which it probably does not, in which case it defaults

to “None”)

fid The failure ID. Defaults to the banned IP address

unless it has been changed by the filter. This can be

6 https://www.statusline.org/

https://www.statusline.org/

Fail2Ban Demystified Custom Fail2Ban Actions

used to give an ID to general failures that do not

include an IP address

family The IP address family: INET4 or INET6

time The unix epoch time of the ban. If you use this, you’ll

probably want to convert it to a human-readable

format using the date shell command, for example

date -d ‘@<time>’

bancount The total number of bans in the database for the IP

address in this jail

jail.banned The number of IP addresses currently banned for this

jail

jail.banned_total The total number of IP addresses banned for this jail

since the last restart

bantime The length of the ban, in seconds

failures The number of times the filter matched a log line for

this ban

ipjailfailures The total number of filter matches in the database for

this IP in this jail

ipfailures The total number of filter matches in the database for

this IP across all jails

jail.found The current number of filter matches for this jail, for

all IP addresses

jail.found_total The total number of filter matches since restart for

this jail for all IP addresses

matches A list of the log lines that were matched for this ban

ipjailmatches A list of all matches in the database for this IP address

in this jail

ipmatches A list of all matches in the database for this IP address

across all jails

raw-ticket An object containing data relevant to this ban,

including ip, time, bantime, bancount, failures, and

matches.

F-name Custom tags that can be set in the filter regex. See

below.

restored 1 if the ban has been restored, for example after a

daemon restart, or 0 otherwise.

7 https://www.statusline.org/

https://www.statusline.org/

Fail2Ban Demystified Custom Fail2Ban Actions

br A newline (“\n”) character

sp A literal space (“ “) character

For cumulative historical variables, such as bancount and ipjailmatches, the

lookback period depends on the database’s retention length, which defaults to 1 day.

The retention length is defined by the dbpurgeage property in fail2ban.conf.

(Remember to copy the file to fail2ban.local if you make changes).

The “F-name” tags are custom tags that can be defined in a jail’s filter (in the filter

configuration file in filter.d) by enclosing the desired pattern in a pair of <F-name>.
. .</F-name> tags. For example, if the failregex includes this snippet at an

appropriate place:

failregex = . . . <F-EMAIL>\w+@(\w+\.?)+</F-EMAIL> . . .

then the F-EMAIL variable will be pre-populated with the matching email address

and can be used with <F-EMAIL> in actions. More details about custom filter tags

will be discussed in another article about Fail2Ban filters.

Action scripts can also refer to variables, including variables that define scripts, using

python-like format:

actionban = %(variable)s

The variable “known/parameter” is particularly useful. It is pre-defined as the

last-known definition for an action or parameter and can be used to refer to an

inherited definition.

For example, suppose you want to use the existingmail.conf configuration (which

uses the “mail” command to send an email notification each time an IP is banned),

but you only want to send the email when an IP has been banned at least three times.

To do that, you could create a configuration filemail.local that looks like this:

mail.local
Send an email notification for three or more bans from
the same IP

[Definition]
actionban = if [<bancount> -ge <toomany>]; then

%(known/actionban)s
fi

[Init]

8 https://www.statusline.org/

https://www.statusline.org/

Fail2Ban Demystified Custom Fail2Ban Actions

toomany = 3

Linking Actions to Jails

The actions associated with each jail are defined in jail.local with the action

property. You can add a new action to existing ones in the [DEFAULT] section or in

individual jails. Each jail can have more than one action, with each one on a new line

beginning with whitespace. When adding a new action, append it to any that already

exist so you don’t override the existing firewall actions.

For example, if you want to addmail.local to a jail (or default) and it already has

action = %(action_)s

then add your action beneath it, not including the .local extension:

action = %(action_)s
mail

If you are adding a custom action to an individual jail and there is no existing action

property, the jail is currently using the default action. You can change the default

higher up in jail.local or you can add the action property to the jail to retain the

default:

action = %(known/action)s
your_action_here

Passing Variables into Actions

Sometimes you may want to override variables defined in your actions’ [Init] sections

individually per jail. To do this, you can include the variables as comma-separated

key=value pairs inside square brackets after an action name.

action = someaction[key1=value1, key2=”value2”, …]

In this example, two variables are passed into the “notifyme” action for the sshd jail:

[sshd]
port = ssh

9 https://www.statusline.org/

https://www.statusline.org/

Fail2Ban Demystified Custom Fail2Ban Actions

logpath = %(sshd_log)s
backend = %(sshd_backend)s
action = %(known/action)s

notifyme[token=”ABCDEF123456”, priority=5]

After adding new actions in jail.local, it may not be sufficient to just reload the

Fail2Ban daemon, so you should completely restart it:

sudo systemctl restart fail2ban

And check it’s status:

sudo systemctl status fail2ban

And there you have it. Happy banning!

10 https://www.statusline.org/

https://www.statusline.org/

